Theory Of Modern Electronic Semiconductor
Devices
THEORY OF MODERN ELECTRONIC SEMICONDUCTOR DEVICES KEVIN F.
BRENNAN APRIL S. BROWN Georgia Institute of Technology
CONTENTS
PREFACE xi
1 OVERVIEW OF SEMICONDUCTOR DEVICE TRENDS 1
1.1 Moore’s Law and Its Implications 1
1.2 Semiconductor Devices for Telecommunications 7
1.3 Digital Communications 11
2 SEMICONDUCTOR HETEROSTRUCTURES 14
2.1 Formation of Heterostructures 14
2.2 Modulation Doping 20
2.3 Two-Dimensional Subband Transport at Heterointerfaces 25
2.4 Strain and Stress at Heterointerfaces 45
2.5 Perpendicular Transport in Heterostructures and
Superlattices 57
2.6 Heterojunction Materials Systems: Intrinsic and
Extrinsic Properties 66
Problems 81
3 HETEROSTRUCTURE FIELD-EFFECT TRANSISTORS 84
3.1 Motivation 84
3.2 Basics of Heterostructure Field-Effect Transistors 88
3.3 Simplified Long-Channel Model of a MODFET 92
3.4 Physical Features of Advanced State-of-the-Art MODFETs
104
viii CONTENTS
3.5 High-Frequency Performance of MODFETs 115
3.6 Materials Properties and Structure Optimization for
HFETs 123
Problems 127
4 HETEROSTRUCTURE BIPOLAR TRANSISTORS 130
4.1 Review of Bipolar Junction Transistors 130
4.2 Emitter–Base Heterojunction Bipolar Transistors 141
4.3 Base Transport Dynamics 152
4.4 Nonstationary Transport Effects and Breakdown 158
4.5 High-Frequency Performance of HBTs 170
4.6 Materials Properties and Structure Optimization for HBTs
183
Problems 192
5 TRANSFERRED ELECTRON EFFECTS, NEGATIVE
DIFFERENTIAL RESISTANCE, AND DEVICES 195
5.1 Introduction 195
5.2 k-Space Transfer 196
5.3 Real-Space Transfer 206
5.4 Consequences of NDR in a Semiconductor 213
5.5 Transferred Electron-Effect Oscillators: Gunn Diodes 217
5.6 Negative Differential Resistance Transistors 220
†5.7 IMPATT Diodes 222
Problems 232
6 RESONANT TUNNELING AND DEVICES 234
6.1 Physics of Resonant Tunneling: Qualitative Approach 234
6.2 Physics of Resonant Tunneling: Envelope Approximation
239
†6.3 Inelastic Phonon Scattering Assisted Tunneling: Hopping
Conduction 249
6.4 Resonant Tunneling Diodes: High-Frequency Applications
258
6.5 Resonant Tunneling Diodes: Digital Applications 265
6.6 Resonant Tunneling Transistors 273
Problems 276
7 CMOS: DEVICES AND FUTURE CHALLENGES 279
†7.1 Why CMOS? 279
7.2 Basics of Long-Channel MOSFET Operation 288
†Optional material.
CONTENTS ix
7.3 Short-Channel Effects 297
7.4 Scaling Theory 310
7.5 Processing Limitations to Continued Miniaturization 314
Problems 317
8 BEYOND CMOS: FUTURE APPROACHES TO COMPUTING
HARDWARE 320
8.1 Alternative MOS Device Structures: SOI, Dual-Gate FETs,
and SiGe 320
8.2 Quantum-Dot Devices and Cellular Automata 325
8.3 Molecular Computing 340
8.4 Field-Programmable Gate Arrays and Defect-Tolerant
Computing 354
8.5 Coulomb Blockade and Single-Electron Transistors 358
8.6 Quantum Computing 369
Problems 379
9 MAGNETIC FIELD EFFECTS IN SEMICONDUCTORS 381
9.1 Landau Levels 381
9.2 Classical Hall Effect 392
9.3 Integer Quantum Hall Effect 398
9.4 Fractional Quantum Hall Effect 407
9.5 Shubnikov–de Haas Oscillations 413
Problems 416
REFERENCES 419
APPENDIX A: PHYSICAL CONSTANTS 433
APPENDIX B: BULK MATERIAL PARAMETERS 435
Table I: Silicon 435
Table II: Ge 436
Table III: GaAs 436
Table IV: InP 437
Table V: InAs 437
Table VI: InN 438
Table VII: GaN 438
Table VIII: SiC 439
Table IX: ZnS 439
x CONTENTS
Table X: ZnSe 440
Table XI: AlxGa1#xAs 440
Table XII: Ga0:47In0:53As 441
Table XIII: Al0:48In0:52As 441
Table XIV: Ga0:5In0:5P 442
Table XV: Hg0:70Cd0:30Te 442
APPENDIX C: HETEROJUNCTION PROPERTIES 443
INDEX 445